
REFLECTIVE VIRTUAL MACHINE

Karsten Verelst�
Vrije Universiteit Brussel

Programming Technology Lab (PROG)

pleinlaan 2, 1050 Brussels

Belgium

karsten.verelst@vub.ac.be

Werner van Belle
Programming Technology Lab (PROG)

Vrije Universiteit Brussel (VUB), Brussels Belgium

werner.van.belle@vub.ac.be

Theo D’Hondt
Programming Technology Lab (PROG)

Vrije Universiteit Brussel (VUB), Brussels Belgium

tjdhondt@vub.ac.be

Abstract We claim that current day reflective architectures do not offer sufficient function-
ality, and that new developments in computer science push ustowards a stronger
reflective model: reflective virtual machines. We have witnessed these shortcom-
ings in the application domain of mobility. Strong mobilityis very difficult to
implement in today’s programming languages, mainly because of the inability to
capture the program’s computational state. Therefore we propose a new reflec-
tive architecture, the reflective virtual machine, that offers sufficient support for
applications in mobility. In this paper we will first describe the basic functionality
a mobile agentplatform should offer. This shall be done using a solution to the
malicious host problem as a case. After identifying these needs we will introduce
an interpreter, the Reflective Virtual Machine, that offerssufficient reflection, so
that mobile applications can be straightforwardly implemented.

Keywords: reflection, mobility, security, malicious host problem�Karsten Verelst is funded by the Belgium Fund for scientific Investigation (FWO)

1



2

1. Introduction

Reflection has since long proven its use. Most current day languages have
at least reified their abstract grammar into the object level, thereby creating an
abstraction level that allows an elegant solutions to many problems. However
when we turn to new applications domains such as mobile agentsystems we
notice some shortcomings in today’s reflective architectures.

Suppose we want to implement a strong mobile program; that isa program
that has the ability to move to another location on the network at any time during
its execution, even during loops and deep nested functions.To implement
this application the following five steps should be taken: First the program’s
computational state must be captured. Then it should be serialized and moved
across the network. And finally the receiver should deserialize the message and
continue the execution of the transferred computation.

Although this algorithm seems simple enough it cannot be easily imple-
mented in most popular languages today. Especially the capturing and restor-
ing of the computational state proves to be problematic. A program’s com-
putational state usually consist of some sort of stack, a memory and the code.
For a language like scheme for example this corresponds to the call stack and
the environment containing variable-bindings. For a compiled language the
computational state would more resemble a data stack, a handful of registers
and the code. So if we want to capture the computational state, we need to
obtain a copy of the virtual machine’s internal stack, memory model and code.
Accessing the code is not usually the problem because the abstract grammar is
already reified in many languages, but capturing the stack and memory is much
more problematic and often requires the programmer to maintain an explicit
copy of the virtual machine’s internal data structures himself.

In practice we have observed that strong mobility has been implemented
in most popular languages, although the elegance and possible restrictions of
the resulting code usually strongly correspond to the reflective nature of the
language. So judging by this introduction we can already conclude that mobile
applications require a strong reflective architecture. Foran interpreter to be
useful as a mobile agent platform, it will not only need to reify it’s abstract
grammar, but also a large part of it’s internal state such as the stack and the
memorymodel. In the next section we will present a solution to the malicious
host problem and use this case to clearly identify which internal datastructures
an interpreter should reify and what basic functionality itshould offer. After
this section we will demonstrate how we can implement such a virtual machine.

2. The malicious host problem:

Mobile agent security can be divided into three different fields. First there is
the matter of safe communication: sending our agent to the remote host with-



Reflective Virtual Machine 3

out anybody intercepting the code. This challenge can be easily solved using
cryptography. Next there is the threat of possible viruses:malicious agents that
try to infect a remote host. Although much work remains to be done here, there
exist some solutions like the Java sandbox model[3] and proof carrying code
[10]. The main challenge in agent security is trying to protect the agent from
a malicious host. Suppose we would create an agent that visits several airport
sites looking for the cheapest flight to a certain location. Our agent would be
sent to a remote airport site, conduct a local database search and continue its
voyage to the next airport. Now suppose that our agent arrives at a malicious
airport. Since the malicious host has access to the agents internal variables,
nothing prohibits him from tweaking the stored prices of previously visited
airports, or even rewriting the agent’s code. This is calledbrainwashing. Up
to now few techniques have been found to effectively secure an agent against
brainwashing. Data-encryption can never work because the agent needs to be
able decipher the data it needs to work with. But if the agent can do this, then
so can the malicious host. One possible solution to protect against brainwash-
ing is the application homomorphic functions[9], first presented by Sander &
Tschudin. The technique they present consists of encrypting the agent’s input
and letting the agent calculate with the encrypted data. Then afterwards we
will try to obtain the unencrypted result from the encryptedcomputation’s an-
swer. For example, suppose that we have an agent that computes a very simple
function, like an exclusive or of two numbers. Then to securely calculate the
result of this function we will encrypt the input, pass it to the agent and later on
try to decrypt the computed result. In our example we could encrypt the data
by taking the complement of one of the arguments. Then we let the agent do
its computation on the encrypted data, and later we decrypt the result by taking
the complement once more. As a result, the remote host never knows what
encryption scheme was used, so it can never interpret the agent’s data.

Although this technique is very promising and is currently one of the few
solutions proposed to solve the malicious host problem, there are still a few
drawbacks inherent to it. First of all the code itself is not encrypted, so nothing
prohibits the host from recoding the agent. Another major problem is loops
and recursion. For a loop to be correctly executed, the loopsresult should be
partially decrypted so that the same loop invariant is satisfied at the beginning
of the loop again. This partial decryption might help the host to decrypt all data
or abuse the loop’s results.

To solve these drawbacks we propose a solution where this technique is not
only applied to the agent’s data but to the agent’s code as well. This would
result in creating a homomorphic agent: an agent that computes an algorithm
similar to the original agent but that produces an encryptedresult. Again the
malicious host doesn’t know the used encryption scheme and can therefore not
recode the agent in a sensible way. As a simple example we can present the



4

simple increment(x) operation and encrypt it so that it willactually compute
’x+2’ in place of the original function ’x+1’. Again after the computation we
can decipher the result by subtracting one from the result, but the computing
platform has no idea what it is computing and can therefore not sensibly tamper
with the code. In a real implementation, security can even befurther enhanced
by combining this encrypted program with Sander & Tschudin’s original idea,
resulting in an encrypted program working on encrypted data.

Next we will look at such an encrypted program as an agent, being executed
by a specific interpreter. This means that an encrypted mobile agent is sent
over the network as piece of code accompanied with it’s own interpreter. Now
suppose that we are able to redefine this interpreter at runtime. For example that
we can at runtime decide that the increment function gets encrypted differently.
This would offer more flexibility to the agent’s encryption scheme and could
even eliminate the partial decryption of a loops results by redefining the loop
so it now correctly executes on the new data encryption scheme.

It is apparent that the implementation of this technique imposes very strict
rules on the virtual machine. First of all, since we are dealing with mobile
agents, we would like reification of the computational state, eg the abstract
grammar, the stack and the memory model. Next to this, we justshowed that
we need a very flexible interpreter where the programmer would be able to
redefine the interpreters semantics at runtime. Therefore we need a reflective
virtual machine that reifies it’s own primitives.

3. The Reflective Virtual Machine

We define a reflective virtual machine as a virtual machine that reifies and
absorbs its entire computational state including the abstract grammar, the mem-
ory model, the environment model, the stack and its primitives. As explained
above we want a virtual machine that offers as much reflectionas possible to the
user. This starts of course with the reflection of the abstract grammar. When
a programmer inserts a program into the virtual machine, theprogram is first
parsed and transformed into a treelike structure, the abstract grammar. Under
reflection of the abstract grammar we understand that the nodes of this tree are
made explicit in the language. An example of a reified abstract grammar can
be found in the java.lang.reflect package. All methods in this package allow
access to the internal representation of Java’s first class data structures. Our
reflective virtual machine must of course reflect its entire abstract grammar.
This implicates that all metalevel data structures must be first class and this also
implies the existence of meta-operators such as read, eval and apply. We will
not elaborate further on this subject since reflection of theabstract grammar is
already well understood and almost all popular languages today exhibit at least
some reflective features.



Reflective Virtual Machine 5

Next we also wish the reification and absorption of the entirecomputational
state. As explained above, the computational state usuallyexists of some sort of
stack, a part of memory and the program code. To reify the computational state
we must reify these three data structures. Since the programcode is internally
represented as abstract grammar, reflection of the code is essentially the same
as reflection of the abstract grammar described above. So next on the list is
reflection of the stack. Reification of the stack means that the meta level stack
should be explicit and that it should preferably be stored ina object level data
structure. In practice this means that the virtual machine’s stack can best be
created in the interpreters heap and that it is best implemented as some table or a
list or whatever equivalent datastructure your programming language supports.
Also follows that all objects that can be stored on the stack should again be
reflected in the object level. For example, if your stack can contain debugging
information, then this information must also be made explicit in the object level.
Finally, to reify the entire computational state we also need to reify some part
of the environment. What this environment looks like depends very heavily
on the virtual machine. In case of a compiled program, this are usually some
registers and the heap, while for a functional language thislooks more like an
environment with variable bindings, and for an object oriented language this can
be the entire object hierarchy. Independent of what it lookslike the environment
should be reflected in the language. Again this might imply that meta level data
structures need to be made explicit and that possibly new datastructures the
represent this environment need to be constructed.

When these three meta level datastructures are reflected into the object level
we have successfully reflected the entire computational state. Technically this
means that we have introduced sufficient means of reflection to implement the
mobile application presented before. However, we want to gofurther and also
reify the virtual machine’s primitives and memory model. Weare already ob-
serving an evolution towards this idea in the Squeak virtualmachine. Currently
the Squeak virtual machine is already written in the language itself. To actually
use this metacircular Squeak it is first compiled to the C programming language
and then this generated C code is further compiled and the user is presented
with a new virtual machine. Our aim is to continue this evolution and add
more reflective properties to the language, so that our virtual machine can be
rewritten at runtime.

For this to be possible, the virtual machine’s primitives should be reflected
into the language, or in simple words, the virtual machines should be writ-
ten in the programming language itself. Under primitives weunderstand all
functionality offered by the meta level. This ranges from natives like ’+’ and
sqrt, to the entire eval-method. The big advantage of such a metacircular im-
plementation is that the programmer can at runtime change the interpreter’s
behavior. For example nothing prohibits him from introducing new primitives



6

or redefining the evaluation of the existing ones. Since we also consider the
parser (the read-primitive) part of the reflected primitives, the language’s syntax
isn’t statically defined anymore either. Redefining this read-native would allow
the programmer to adopt any syntax he likes. Another possible application can
be an automatic versioning system. As time goes by there willbe many differ-
ent versions of the virtual machine in circulation and we encounter the problem
of applications requiring a certain version of the VM beforethey can run. This
problem can now be easily solved because the application itself can upgrade
the virtual machine to the version it requires. From these examples and the case
presented above it is obvious that reflection of the interpreter’s primitives is
really worthwhile researching, even though it has some serious implications on
the design of the virtual machine. So should the VM implementation consist of
many little modules, where each module corresponds to a single primitive, so
that changes to the primitives will only have a limited impact. There is also the
problem of poor performance. Most metacircular interpreters have a tendency
to be slow. However we will explain in the next section how this performance
degradation can be solved using JIT-compiling.

This is what we understand under the term Reflective Virtual Machine. A
virtual machine that reflects as much as possible of meta level datastructures,
resulting in a small mini-kernel and a metacircular interpreter, that is then re-
flected into the meta level. Also we have shown that many different applications
domains can benefit from the flexibility that the RVM offers. Examples for this
can be found in the domains of mobility, concurrency, scheduling, distribution,
meta-programming and AOP, versioning tools and interpreter design.

4. RVM design

We have described what a reflective virtual machine looks like and what
benefits it offers over other less reflective interpreters. Now we will give some
guidelines about how such a reflective virtual can be implemented. For the
implementation of the reflective virtual machine we startedwith a small stack
machine called pico[2]. This is a small imperative programming language,
simplicity being one of its primary design goals. It alreadyoffers a completely
reified abstract grammar and can be very naturally convertedto a complete
reflective virtual machine. Evaluation in this interpreteris based on continua-
tions, which we define as an indivisible part of an execution.For example a ’+’
primitive consists of three continuations: one continuation for the evaluation
of the first argument, another continuation for evaluation of the second argu-
ment and a third continuation that actually calculates the result of the binary
operator. Because the evaluation of the first two continuations might result in
a large computation, involving many more continuations, westore all continu-
ations on a continuation stack. This stack contains the ’future’ of the current



Reflective Virtual Machine 7

evaluation. Our Reflective Virtual Machine will be entirelydefined in terms of
these continuations and will therefore only consist of a small mini-kernel that
each time picks the top continuation from the continuation stack and executes
it. So if we succeed in reflecting these continuations in the object level we will
have succeeded in a large part of the goals we set out in the definition of the
virtual machine: reflection of the virtual machine’s primitives.

We believe that there are three possible ways to reflect continuations into the
object level. The first is to create an abstract grammar component that represents
a continuation. This would allow the programmer to create new primitives by
rearranging existing continuations. However this does notoffer us the flexibility
we had in mind and the performance would be sluggish. A secondtechnique
would be the metacircular evaluator where all primitives are written in the object
language and are evaluated by the metacircular engine. Thisof course would
allow us easy access to all primitives but the overall performance would be
horrible. So we chose for the third option where all primitives are written at the
object level, but are then run them through a JIT-compiler sothat the execution
can be carried out in reasonable time.

So by now we get to the point where the RVM looks like a mini-kernel written
in the metalanguage, a bunch of primitives defined in the object level and a JIT-
compiler. This allows the reflection of all the data-structures we wanted and
allows a good performance, but leaves us with the problem of bootstrapping.
This can be solved by supplying the virtual machine with a setof primitives
written in the metalanguage. Once the virtual machine has booted we can
compile all object-level primitives and replace the first set of meta level booting
primitives.

Now that the underlying structure of the virtual machine is defined, we can
take a look at how the continuation stack can be reflected. In theory this is not so
difficult. We make sure that we use one of the language’s datatypes (like a table
or a list) as the internal representation for the stack and make sure everything
that can ever be put on the stack is reflected. However in practice we must be
cautious: since both the interpreter and the programmer canaccess the stack at
the same time we must look out for concurrency problems. Thatis why we opt
for a functional virtual machine with as few destructive operations as possible.

Apart from the stack also the abstract grammar, the environment and the
memory model have to be reflected. This should not be a big problem since
this is already implemented in many languages today and thisissue is well
understood.

5. Conclusion

We have shown how current day reflective architectures don’toffer suffi-
cient support for several application domains such as mobility, concurrency and



8

scheduling. We have proven this claim by taking the malicious host problem as
a case. The solution we proposed for this problem is based on the encryption of
the agent itself, by redefining the interpreters semantics at runtime. Of course
this requires very strong reflectional properties of our interpreter and that is
why we introduced the reflective virtual machine.

A RVM is set out to be a platform that offers sufficient functionality to support
mobility and is defined as a virtual machine that reifies it’s entire computational
state, including abstract grammar, stacks, memory and primitives. Further have
we shown how such a RVM can be built and what special issues should be dealt
with to avoid concurrency problems and keep a reasonable performance.



References

[1] H. Ogawa, K. Shimura, S. Matsuoka, F. Maruyama, Y., Y Kimura, OpenJIT: An Open-
Ended, Reflective JIT Compiler Framework for Java, SpringerVerlag heidelberg, May
2000

[2] T. D’Hondt. http://pico.vub.ac.be/

[3] Gong, Java Security: Present and Near Future, 1997

[4] W. Van Belle, K. Verelst, T. D’Hondt, Location Transparent Routing in Mobile Agent
Systems Merging Name Lookups with Routing December 1999

[5] B. Folliot, I. Piumarta, F. Riccardi, Virtual Virtual Machines, September 1997.

[6] http://www-sor.inria.fr/projects/vvm/

[7] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, A. Kay Back to the Future The Story of
Squeak, A Practical Smalltalk Written in Itself

[8] A. Goldberg, D. Robson, Smalltalk-80: The Language, Addison Wesley, 1989, ISBN
0-201-13688-0

[9] T. Sander, C. F. Tschudin, Protecting Mobile Agents Against Malicious Hosts, November
11, 1997

[10] J. Feigenbaum and P. Lee. Trust Management, and proof carrying code in secure mobile-
code applications (A position paper). march 1997

9


