REFLECTIVE VIRTUAL MACHINE

Karsten Verelst

Vrije Universiteit Brussel

Programming Technology Lab (PROG)
pleinlaan 2, 1050 Brussels

Belgium

karsten.verelst@vub.ac.be

Werner van Belle

Programming Technology Lab (PROG)

Vrije Universiteit Brussel (VUB), Brussels Belgium
werner.van.belle@vub.ac.be

Theo D’Hondt

Programming Technology Lab (PROG)

Vrije Universiteit Brussel (VUB), Brussels Belgium
tidhondt@vub.ac.be

Abstract We claim that current day reflective architectures do natraftifficient function-
ality, and that new developments in computer science pustwesds a stronger
reflective model: reflective virtual machines. We have wstesl these shortcom-
ings in the application domain of mobility. Strong mobilisyvery difficult to
implement in today’s programming languages, mainly bezafithe inability to
capture the program’s computational state. Therefore wpqse a new reflec-
tive architecture, the reflective virtual machine, thaedsfsufficient support for
applications in mobility. In this paper we will first desceithe basic functionality
a mobile agentplatform should offer. This shall be done gisirsolution to the
malicious host problem as a case. After identifying theselaeve will introduce
an interpreter, the Reflective Virtual Machine, that offenfficient reflection, so
that mobile applications can be straightforwardly impletee.

Keywords: reflection, mobility, security, malicious host problem

*Karsten Verelst is funded by the Belgium Fund for scientifieelstigation (FWO)

1. Introduction

Reflection has since long proven its use. Most current dayuiages have
at least reified their abstract grammar into the object Jdtaereby creating an
abstraction level that allows an elegant solutions to manoplpms. However
when we turn to new applications domains such as mobile agystéms we
notice some shortcomings in today’s reflective architestur

Suppose we want to implement a strong mobile program; thapregram
that has the ability to move to another location on the ngtabany time during
its execution, even during loops and deep nested functidissimplement
this application the following five steps should be takernrstihe program’s
computational state must be captured. Then it should baligexd and moved
across the network. And finally the receiver should deseeidhe message and
continue the execution of the transferred computation.

Although this algorithm seems simple enough it cannot bdyeasple-
mented in most popular languages today. Especially theidgagtand restor-
ing of the computational state proves to be problematic. ég@am’s com-
putational state usually consist of some sort of stack, aomg@ind the code.
For a language like scheme for example this correspondsetoat stack and
the environment containing variable-bindings. For a cdegplanguage the
computational state would more resemble a data stack, darfdegisters
and the code. So if we want to capture the computational, staeneed to
obtain a copy of the virtual machine’s internal stack, mgmmoodel and code.
Accessing the code is not usually the problem because theabgrammar is
already reified in many languages, but capturing the stagk@@mory is much
more problematic and often requires the programmer to @iairstn explicit
copy of the virtual machine’s internal data structures leilins

In practice we have observed that strong mobility has begmeimented
in most popular languages, although the elegance and pmsstirictions of
the resulting code usually strongly correspond to the rifleqature of the
language. So judging by this introduction we can alreadgkmie that mobile
applications require a strong reflective architecture. @minterpreter to be
useful as a mobile agent platform, it will not only need tdyréf's abstract
grammar, but also a large part of it’s internal state suchhasstack and the
memorymodel. In the next section we will present a solutinthe malicious
host problem and use this case to clearly identify whictrirgkedatastructures
an interpreter should reify and what basic functionalitgtibuld offer. After
this section we will demonstrate how we can implement sudh@al machine.

2. The malicious host problem:

Mobile agent security can be divided into three differeritiie First there is
the matter of safe communication: sending our agent to tmete host with-

Reflective Virtual Machine 3

out anybody intercepting the code. This challenge can hityessdved using
cryptography. Next there is the threat of possible virusealicious agents that
try to infect a remote host. Although much work remains to tveethere, there
exist some solutions like the Java sandbox model[3] andfmawying code
[10]. The main challenge in agent security is trying to pcothe agent from
a malicious host. Suppose we would create an agent that gisieral airport
sites looking for the cheapest flight to a certain locatiomr @gent would be
sent to a remote airport site, conduct a local databaselsaartcontinue its
voyage to the next airport. Now suppose that our agent arave malicious
airport. Since the malicious host has access to the ageetsah variables,
nothing prohibits him from tweaking the stored prices ofvasly visited
airports, or even rewriting the agent’s code. This is calieinwashing. Up
to now few techniques have been found to effectively secnragent against
brainwashing. Data-encryption can never work becausegértaeeds to be
able decipher the data it needs to work with. But if the agantdo this, then
so can the malicious host. One possible solution to progginat brainwash-
ing is the application homomaorphic functions[9], first preted by Sander &
Tschudin. The technique they present consists of enciyptie agent’s input
and letting the agent calculate with the encrypted data.n#ieerwards we
will try to obtain the unencrypted result from the encryptemnputation’s an-
swer. For example, suppose that we have an agent that casvgpubey simple
function, like an exclusive or of two numbers. Then to selgucalculate the
result of this function we will encrypt the input, pass it@tagent and later on
try to decrypt the computed result. In our example we coulthgrt the data
by taking the complement of one of the arguments. Then wénéetigent do
its computation on the encrypted data, and later we dedngpateisult by taking
the complement once more. As a result, the remote host nexmyskwhat
encryption scheme was used, so it can never interpret th'sigata.

Although this technique is very promising and is currenthe @f the few
solutions proposed to solve the malicious host problenrethee still a few
drawbacks inherent to it. First of all the code itself is notrypted, so nothing
prohibits the host from recoding the agent. Another majobjam is loops
and recursion. For a loop to be correctly executed, the loeggt should be
partially decrypted so that the same loop invariant is atisat the beginning
of the loop again. This partial decryption might help thethoslecrypt all data
or abuse the loop’s results.

To solve these drawbacks we propose a solution where thigitpee is not
only applied to the agent’s data but to the agent’'s code aks Wélis would
result in creating a homomorphic agent: an agent that caespt algorithm
similar to the original agent but that produces an encrypésdlt. Again the
malicious host doesn’t know the used encryption scheme amtherefore not
recode the agent in a sensible way. As a simple example wereserg the

4

simple increment(x) operation and encrypt it so that it &dtually compute
'x+2' in place of the original function 'x+1'. Again after thcomputation we
can decipher the result by subtracting one from the resuttth® computing
platform has no idea what it is computing and can therefotsemsibly tamper
with the code. In a real implementation, security can evefutiber enhanced
by combining this encrypted program with Sander & Tschugdoriginal idea,
resulting in an encrypted program working on encrypted.data

Next we will look at such an encrypted program as an agenmgbeiecuted
by a specific interpreter. This means that an encrypted malgéent is sent
over the network as piece of code accompanied with it's owerjmeter. Now
suppose that we are able to redefine this interpreter atmantror example that
we can at runtime decide that the increment function gets/ptex differently.
This would offer more flexibility to the agent’s encryptiooheme and could
even eliminate the partial decryption of a loops resultsduefining the loop
S0 it now correctly executes on the new data encryption sehem

It is apparent that the implementation of this techniquedsgs very strict
rules on the virtual machine. First of all, since we are deplvith mobile
agents, we would like reification of the computational statg the abstract
grammar, the stack and the memory model. Next to this, weshustved that
we need a very flexible interpreter where the programmer dvbel able to
redefine the interpreters semantics at runtime. Thereferaeed a reflective
virtual machine that reifies it's own primitives.

3. The Reflective Virtual Machine

We define a reflective virtual machine as a virtual machine risifies and
absorbs its entire computational state including the absgrammar, the mem-
ory model, the environment model, the stack and its primegtivAs explained
above we want a virtual machine that offers as much refleessqossible to the
user. This starts of course with the reflection of the abstgemmmar. When
a programmer inserts a program into the virtual machinepthgram is first
parsed and transformed into a treelike structure, theatisgrammar. Under
reflection of the abstract grammar we understand that thesaftthis tree are
made explicit in the language. An example of a reified abstyEEmmmar can
be found in the java.lang.reflect package. All methods is fdickage allow
access to the internal representation of Java’s first clats siructures. Our
reflective virtual machine must of course reflect its entibstaact grammar.
This implicates that all metalevel data structures mustrbediass and this also
implies the existence of meta-operators such as read, eda@ply. We will
not elaborate further on this subject since reflection oftbstract grammar is
already well understood and almost all popular languaggesytexhibit at least
some reflective features.

Reflective Virtual Machine 5

Next we also wish the reification and absorption of the emtirputational
state. As explained above, the computational state usexbys of some sort of
stack, a part of memory and the program code. To reify the cdatipnal state
we must reify these three data structures. Since the progoais internally
represented as abstract grammar, reflection of the codeastély the same
as reflection of the abstract grammar described above. Swoneke list is
reflection of the stack. Reification of the stack means thanikta level stack
should be explicit and that it should preferably be stored abject level data
structure. In practice this means that the virtual machigéck can best be
created in the interpreters heap and that it is best implesders some table or a
list or whatever equivalent datastructure your prograngnamguage supports.
Also follows that all objects that can be stored on the stdwukl again be
reflected in the object level. For example, if your stack camtain debugging
information, then this information must also be made expliche object level.
Finally, to reify the entire computational state we alsocheereify some part
of the environment. What this environment looks like defgenery heavily
on the virtual machine. In case of a compiled program, ttesusually some
registers and the heap, while for a functional languageltlolks more like an
environment with variable bindings, and for an object aigeilanguage this can
be the entire object hierarchy. Independent of what it Ididkesthe environment
should be reflected in the language. Again this might impdy theta level data
structures need to be made explicit and that possibly neasttattures the
represent this environment need to be constructed.

When these three meta level datastructures are reflectethabbject level
we have successfully reflected the entire computationtd.sfachnically this
means that we have introduced sufficient means of refleaiomplement the
mobile application presented before. However, we want ttugber and also
reify the virtual machine’s primitives and memory model. e already ob-
serving an evolution towards this idea in the Squeak virmethine. Currently
the Squeak virtual machine is already written in the langutsglf. To actually
use this metacircular Squeak it is first compiled to the C igning language
and then this generated C code is further compiled and theisipeesented
with a new virtual machine. Our aim is to continue this eviolutand add
more reflective properties to the language, so that ouralirnachine can be
rewritten at runtime.

For this to be possible, the virtual machine’s primitivesdd be reflected
into the language, or in simple words, the virtual machinesukl be writ-
ten in the programming language itself. Under primitives wnelerstand all
functionality offered by the meta level. This ranges frontives like '+ and
sqgrt, to the entire eval-method. The big advantage of sucletagincular im-
plementation is that the programmer can at runtime changeéntkrpreter’s
behavior. For example nothing prohibits him from introchgcnew primitives

6

or redefining the evaluation of the existing ones. Since we abnsider the
parser (the read-primitive) part of the reflected primiiviie language’s syntax
isn't statically defined anymore either. Redefining thigireative would allow
the programmer to adopt any syntax he likes. Another pasaiiyblication can
be an automatic versioning system. As time goes by therébwithany differ-
ent versions of the virtual machine in circulation and wecemder the problem
of applications requiring a certain version of the VM beftitey can run. This
problem can now be easily solved because the applicatieli @an upgrade
the virtual machine to the version it requires. From thesergles and the case
presented above it is obvious that reflection of the intégpe primitives is
really worthwhile researching, even though it has someasiimplications on
the design of the virtual machine. So should the VM impleragoi consist of
many little modules, where each module corresponds to desprgnitive, so
that changes to the primitives will only have a limited impakhere is also the
problem of poor performance. Most metacircular interpgeteve a tendency
to be slow. However we will explain in the next section howstperformance
degradation can be solved using JIT-compiling.

This is what we understand under the term Reflective Virtuathne. A
virtual machine that reflects as much as possible of meta dtastructures,
resulting in a small mini-kernel and a metacircular intetpr, that is then re-
flected into the meta level. Also we have shown that manyriffeapplications
domains can benefit from the flexibility that the RVM offerscanples for this
can be found in the domains of mobility, concurrency, schiegudistribution,
meta-programming and AOP, versioning tools and interpasign.

4. RVM design

We have described what a reflective virtual machine looks &kd what
benefits it offers over other less reflective interpreterswMe will give some
guidelines about how such a reflective virtual can be implgete For the
implementation of the reflective virtual machine we stawatth a small stack
machine called pico[2]. This is a small imperative prograngrnianguage,
simplicity being one of its primary design goals. It alreadfers a completely
reified abstract grammar and can be very naturally convedea complete
reflective virtual machine. Evaluation in this interpreiebased on continua-
tions, which we define as an indivisible part of an executeor. example a '+’
primitive consists of three continuations: one continuatior the evaluation
of the first argument, another continuation for evaluatiéthe second argu-
ment and a third continuation that actually calculates #sailt of the binary
operator. Because the evaluation of the first two contipaatimight result in
a large computation, involving many more continuationsstege all continu-
ations on a continuation stack. This stack contains ther&itof the current

Reflective Virtual Machine 7

evaluation. Our Reflective Virtual Machine will be entirelgfined in terms of
these continuations and will therefore only consist of alsmmi-kernel that
each time picks the top continuation from the continuati@tls and executes
it. So if we succeed in reflecting these continuations in thjeai level we will
have succeeded in a large part of the goals we set out in thatabefiof the
virtual machine: reflection of the virtual machine’s priivés.

We believe that there are three possible ways to reflectragmtions into the
objectlevel. Thefirstisto create an abstract grammar compidhat represents
a continuation. This would allow the programmer to creat® pemitives by
rearranging existing continuations. However this doesfiet us the flexibility
we had in mind and the performance would be sluggish. A setestthique
would be the metacircular evaluator where all primitivesvaritten in the object
language and are evaluated by the metacircular engine.of bsurse would
allow us easy access to all primitives but the overall pertorce would be
horrible. So we chose for the third option where all prim@g\are written at the
object level, but are then run them through a JIT-compilehadthe execution
can be carried out in reasonable time.

So by now we getto the pointwhere the RVM looks like a minidetmritten
in the metalanguage, a bunch of primitives defined in theablgeel and a JIT-
compiler. This allows the reflection of all the data-struetuwe wanted and
allows a good performance, but leaves us with the problenoofdtrapping.
This can be solved by supplying the virtual machine with ao$edrimitives
written in the metalanguage. Once the virtual machine hadeblowe can
compile all object-level primitives and replace the firgtefaneta level booting
primitives.

Now that the underlying structure of the virtual machinea$imed, we can
take a look at how the continuation stack can be reflectedhelory this is not so
difficult. We make sure that we use one of the language’s yfaat(like a table
or a list) as the internal representation for the stack ankkersare everything
that can ever be put on the stack is reflected. However inipeaste must be
cautious: since both the interpreter and the programmeacegss the stack at
the same time we must look out for concurrency problems. iEhahy we opt
for a functional virtual machine with as few destructive gi®ns as possible.

Apart from the stack also the abstract grammar, the enviemirand the
memory model have to be reflected. This should not be a bigigrrobkince
this is already implemented in many languages today andigbige is well
understood.

5. Conclusion

We have shown how current day reflective architectures duffér suffi-
cient support for several application domains such as ritglibncurrency and

8

scheduling. We have proven this claim by taking the maligioost problem as
a case. The solution we proposed for this problem is basdukeoenicryption of
the agent itself, by redefining the interpreters semanticgrdime. Of course
this requires very strong reflectional properties of oueripteter and that is
why we introduced the reflective virtual machine.

ARVMi s set outto be a platform that offers sufficient functidity to support
mobility and is defined as a virtual machine that reifies t'sre computational
state, including abstract grammar, stacks, memory andtprs. Further have
we shown how such a RVM can be built and what special issuegdhe dealt
with to avoid concurrency problems and keep a reasonabferpance.

References

[1]

H. Ogawa, K. Shimura, S. Matsuoka, F. Maruyama, Y., Y KimuOpenJIT: An Open-
Ended, Reflective JIT Compiler Framework for Java, Springgtag heidelberg, May
2000

[2] T.D’Hondt. http://pico.vub.ac.be/

(3]

Gong, Java Security: Present and Near Future, 1997

[4] W. Van Belle, K. Verelst, T. D’Hondt, Location TranspateRouting in Mobile Agent

[5]
(6]
[7]

Systems Merging Name Lookups with Routing December 1999
B. Folliot, I. Piumarta, F. Riccardi, Virtual Virtual Mzhines, September 1997.
http://www-sor.inria.fr/projects/vvm/

D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, A. Kay Rao the Future The Story of
Squeak, A Practical Smalltalk Written in Itself

[8] A. Goldberg, D. Robson, Smalltalk-80: The Language, iddd Wesley, 1989, ISBN

0-201-13688-0

[9] T.Sander, C. F. Tschudin, Protecting Mobile Agents AgaMalicious Hosts, November

(10]

11, 1997

J. Feigenbaum and P. Lee. Trust Management, and pragimg code in secure mobile-
code applications (A position paper). march 1997

